Références

Belakhovsky, M. \& Pierre, J. (1971). Solid State Commin. 9, 1409.
Bertaut, E. F. (1958). C.R. Acad. Sci. Paris, 246, 3335.
Hastings, J. M., Corliss, L. M., Blume, M. \& Pasternak, M. (1970). Phys. Rev. B1, 3209.

Keffer, F. (1962). Phys. Rev. 126, 896.
Keffer, F. \& O’Sullivan, W. (1957). Phys. Rev. 108, 637.

Kouvel, J. S. \& Kasper, J. S. (1963). J. Phys. Chem. Solids, 24, 529.
Li, Y. Y. (1955). Phys. Rec. 100, 627.
Roth, W. L. (1958). Phys. Rev. 111, 772.
Shirane, G. (1959). Acta Cryst. 12, 282.
Umebayashi, H. \& Ishikawa, Y. (1966). J. Phys. Soc. Japan, 21, 1281.
Wintenierger, M., Chamard-Bois, R., Belakhovsky, M. \& Pierre, J. (1971). Phys. Stat. Sol. (b) 48, 705.

Crystal Surface Morphology Developed During the Sublimation of Oriented Zinc Single Crystals

By G.M.Arnstein,* P. Bolsaitis and R.W.Armstrong
Engineering Materials Group, University of Maryland, College Park, Maryland 20740, U.S.A.

(Received 17 August 1970)

Abstract

The surface structure of zinc single crystals subjected to a sublimation treatment has been studied by the techniques of optical metallography, optical goniometry and by Laue X-ray diffraction. Right cylinders with a $\langle 001\rangle$ axis were enclosed, with titanium getter material, in Vycor tubes evacuated to $10^{-5} \mathrm{~mm} \mathrm{Hg}$ and heated to temperatures in the vicinity of $370^{\circ} \mathrm{C}$ for periods of 100 to 200 hr . A thermal gradient existed in the evacuated chamber such that zinc was transported from one end of the tube to the other end. The sublimation process exposed macroscopically visible crystallographic planes in local regions of the crystals. The three-dimensional structure of the facet morphology has been determined. The exposed planes are of the type $\{10 \overline{1} 0\},\{4041\},\{30 \overline{3} 1\},\{30 \overline{3} 2\},\{10 \overline{1} 1\},\{40 \overline{4}\}\},\{20 \overline{2} 3\}$ and $\{10 \bar{T} 10\}$. The $\{0001\}$ surfaces were relatively unaffected by the sublimation process. The facet structures appear to be related to some extent to the dislocation substructure and also to the Gibbs-Wulff surface energy construction for zinc.

Introduction

In contrast to extensive studies on the sublimation properties of cubic metals (Moore, 1963) little research has been done to investigate this phenomenon for hexagonal close-packed crystals. Andrade \& Randall (1950) observed surface pitting which was produced by the thermal etching of cadmium single crystals having surfaces cut near $\{0001\}$. They concluded that the $\{0001\}$ basal plane was thermally the most stable crystal plane, followed next in stability by the first order pyramidal planes of type $\{10 \overline{\mathrm{I}} 1\}$. Miller, Carpenter \& Chadwick (1969) have recently attributed the appearance of polygonal bubbles which were observed in thin films of zinc, following argon-ion bombardment, to the anisotropy of the crystal surface free energy, thus concluding that the internal bubbles were conforming to a proposed equilibrium (Gibbs-Wulff) shape composed of $\{0001\},\{10 \overline{1} 1\}$ and $\{10 \overline{0} 0\}$ surfaces (cf. Gibbs, 1961; Wulff, 1901). The same crystallographic results have been observed for cadmium and magnesium by Kirchner \& Chadwick (1969).

[^0]The principal result of these preceding investigations is to provide support for the notion that the anisotropy of the surface free energy is responsible for the specific crystallographic appearance of the surface structures which are produced. This result should reasonably be expected to apply for the small polygonal shapes observed in thin films because the contribution of the specific surface energy, $\gamma_{i j}$, to an experimental change in surface area, A_{j}, should give an energy change comparable to the volume dependent energy change (Herring, 1951). However, the same result might also be expected to apply for large scale crystallographically faceted structures such as those described by Andrade \& Randall, if it were presumed that these large structures are simply geometrically similar to the multitudinous submicroscopic structures of which they are composed. On this basis, we chose to investigate the sublimation structures which might be produced in bulk single crystals subjected to heat treatment in a thermal gradient whereby appreciable sublimation of zinc atoms would occur. The possibility of observing significant crystallographic features in the partially sublimed crystals was expected to be enhanced because the maximum ratio of surface energies for zinc is $(\gamma\{1 \overline{2} 10\} / \gamma\{0001\}) \simeq$ $2 \cdot 2$ as compared, for example, with maximum ratio
values $<1 \cdot 1$ for cubic metals (Moore, 1958; Drechsler \& Nicholas, 1967).

Experimental details

The zinc crystals were produced as right cylindrical rods of 8 mm diameter and about 10 cm long with their axes parallel to $\langle 0001\rangle$ (Schultz \& Armstrong, 1964). The specified purity of the starting material was 99.9999%, whereas a complete analysis following the growth of the crystal proved them to be of 99.9% purity, the major contaminants being nonmetallic impurities such as hydrogen and nitrogen (Schultz \& Armstrong, 1964).

Specimens for the sublimation treatment were produced from the initial crystal rods by cleaving them at liquid nitrogen temperature to produce samples of approximately 7 mm height. A number of Laue back reflection pictures were taken to check the initial orientation of the crystals and to obtain a qualitative indication of their perfection preceding the sublimation treatment.

Subsequently the single crystals were enclosed, as shown in Fig. 1, in Vycor tubes that were evacuated to $10^{-5} \mathrm{~mm} \mathrm{Hg}$ and contained 99.999% pure titanium sheet cuttings which were used as a getter to reduce the partial pressure of oxygen in the capsule (Darken \& Gurry, 1953). This sealed Vycor assembly was hung inside a quartz tube furnace chamber having the thermal environment which is also shown in Fig. 1. The samples were always placed at the rather level peak temperature of the profile of the furnace (axial gradient of $\sim 1{ }^{\circ} \mathrm{C} . \mathrm{cm}^{-1}$) to insure that the vapor produced

Fig. 1. Temperature profile of the furnace and location of the specimen.
in the sublimation process condensed in the cooler zone of the capsule, far from the specimen. The samples were heated for time periods ranging from 100 to 200 hr .

Following the sublimation treatments, the crystals were removed for observation and structural analysis by optical metallography, X-ray diffraction and optical goniometry. Fig. 2 (a) and (b) shows two views of one such crystal. The $\{0001\}$ cleavage surface was unchanged in all cases by the sublimation treatment and this surface was employed, therefore, as the reference surface for each type of measurement. Several micrographs were taken of particular crystallographic features with an Ultrascan electron scanning microscope.

Results

It is evident in Fig. $2(a)$ and (b) that the sublimation treatments were sufficiently extensive to produce polygonal holes which could be visually observed at various positions on the cylindrical surfaces of the crystals (where appreciable sublimation had occurred). The overall crystal dimensions were otherwise not significantly altered during the sublimation treatment.

An examination of these various local regions showed that essentially two types of polygonal holes were present, as shown schematically in Fig. $3(a)$ and (b). The holes appeared to be randomly distributed around the cylindrical crystal surfaces. In one case, a crystal exhibited an exceptional amount of sublimation from the top circumferential edge of the cylinder and this led to a remnant $\{0001\}$ plateau of height equal to $\sim \frac{1}{2}$ the original crystal length surrounded by microscopically faceted walls of nearly cylindrical, macroscopic symmetry.

As a first step towards identifying the crystallographic nature of the polygonal holes, Laue back reflection pictures were taken at these sites with the X-ray beam always perpendicular to $\langle 0001\rangle$. At least two pictures were taken in each case: one with the beam perpendicular to a prominent striated surface and one with the beam perpendicular to the boundary which was formed at the intersection of two striated surfaces. The results showed that the striated surfaces contained planes having $\langle 1 \overline{2} 10\rangle$ zone axes and that the boundaries between the striated surfaces appeared to be in planes also containing $\langle 1 \overline{2} 10\rangle$ axes. These measurements were found to be consistent with the measurements of surface reflections by optical goniometry. Table l shows that plane reflections were generally found showing sixfold rotational symmetry orthogonal to the $\langle 0001\rangle$ axis, as expected for planes of type $\{10 \overline{\mathrm{I}} 0\}$. However, it should be appreciated that the optical goniometric measurements were not in themselves sufficient to determine that the $\{10 \bar{T} 0\}$ were being exposed because the $\{1 \overline{2} 10\}$ also show sixfold rotational symmetry about $\langle 0001\rangle$. Next, specific measurements were made of the angular positions around the various $\langle 1 \overline{2} 10\rangle$ axes at which specular reflections could be observed with the
optical goniometer. Table 2 presents the results of a number of the measurements in comparison with calculated angles between particular planes. From data of the type given in these tables and other particular observations which were made during the measurements, the following conclusions are reported:

1. The planes exposed during the sublimation are definitely of type $\{10 \overline{1} 0\},\{10 \overline{1} 1\},\{20 \overline{2} 3\}$ and $\{40 \overline{4} 1\}$; and, possibly additional plane surfaces of type $\{20 \overline{2} 1\}$, $\{30 \overline{3} 1\},\{30 \overline{3} 2\},\{40 \overline{4} 5\}$ and $\{10 \overline{1} 10\}$ are exposed.
2. The $\{10 \overline{1} 1\},\{20 \overline{2} 3\}$ and $\{40 \overline{4} 1\}$ planes appear most frequently in the polygonal holes.
3. The $\{1010\}$ surfaces appear relatively few times but they encompass a large area of several of the holes.
4. The uncertainty in specifying some of the planes in Table 2 is principally due to the substructure misorientations within the crystals, which is of the order of 2° as determined by X-ray diffraction.
5. The $\{10 \overline{1} 10\}$ reflection was observed to show the greatest specularity.

Table 1. Reflections around the $\langle 0001\rangle$ axis of zinc single crystals after partial sublimation

Number of reflection	1	2	3	4	5	6
Measured angle	$58^{\circ} 38^{\prime}$	$58^{\circ} 24^{\prime}$	58°	62°	$60^{\circ} 18^{\prime}$	$62^{\circ} 40^{\prime}$

Table 2. Angles between the normal to the basal surface and the normals to the planes developed in striated surfaces of the polygonal holes

Identified plane

Measured angle (with respect to $\{0001\}$)	Number of measurements
$11^{\circ} 30^{\prime}$	1
$55 \pm 2^{\circ}$	12
$55 \pm 3^{\circ}$	5
$60 \pm 1^{\circ}$	9
$65 \pm 1^{\circ}$	10
$65 \pm 3^{\circ}$	7
$70^{\circ} 58^{\prime}$	1
$79^{\circ} 24^{\prime}$	1
$83 \pm 2^{\circ}$	18
$90 \pm 2^{\circ}$	5

The preceding results are based on a large number of measurements which included various checks on the self-consistency of the observations (Arnstein, 1970). It was found, for example, that the angular distance between equivalent reflections in a $\langle 1210\rangle$ type hole was 120°, as expected.

The optical goniometric measurements could not be made with sufficient precision to determine the manner in which particular faceted planes intersected each
other along the directions forming the internal boundaries of the polygonal holes. In order to obtain information on this aspect of the sublimation structures, optical micrographs were taken with the optical axis approximately perpendicular to the inner boundary of the holes, i.e. nearly parallel to $\langle\overline{2} 10\rangle$. Fig. 4 (a), (b), and (c) shows at increasing magnifications various sections of a boundary which defined the depths of a prominent hole that was examined in detail. The large density of parallel striae intersecting the segmented boundary mark the traces of the basal planes. The overall topographical features of this hole may be seen more clearly in the micrograph of Fig. 4 (d), which was obtained with the scanning electron microscope. The basal traces were used as reference directions to measure, say in the $\{1 \overline{1} 10\}$, projected angles that were made by the apparent boundary directions. Fig. 5 is a map of the projected traces of the various boundary directions relative to the horizontal $\{0001\}$ traces. In each case the boundary direction has itself been matched with a hypothetical direction corresponding to the intersection of two particular $\{h 0 h l\}$ facet planes which are eligible to explain the intersected direction by virtue of the optical goniometric measurements. Table 3 presents all the information contained in Fig. 5, on the basis that the plane in which the measurements were made is $\{T 120\}$ and giving for comparison the calculated angles between these planes and directions.

Table 3. Crystallographic analysis of $a[\overline{1} 20]$ polygonal hole

Planes in striated surface l	Planes in striated surface II	Directions of the sections of
the boundary		

The directions of intersection were calculated in two ways. First, under the assumption that only intersections of planes of the same family are to be expected reasonable agreement with the observed directions was

Fig. 3. Schematic diagram of the polygonal holes.

Fig. 2. Macroscopic views of a zinc single crystal partially sublimed at $370^{\circ} \mathrm{C}$.

(a)

(b)

(d)

Fig. 4. Optical and electron scanning micrographs of a $\langle 1 \overline{2} 10\rangle$ polygonal hole: $(a) \times 50,(b) \times 200,(c) \times 560,(d) \times 42$ (electron scanning).

Fig. 7. Hard-sphere model of crystal surfaces intersection of a (0 111) and ($\overline{\mathrm{I}} 011$) along [1 $\overline{\mathrm{I}} 01]$.

Fig. 8. Hard-sphere model of crystal surface intersection of a $(0 \overline{2} 2 \overline{3})$ and a ($\overline{2} 023$) along [$\overline{1} 22]$.

Fig. 12. Laue back-reflection pattern taken with the X-ray beam parallel to a $\langle 10 \overline{1} 0\rangle$ polygonal hole.
obtained as is shown in Table 3. A second more general analysis involved placing all measured angles on a (1120) stereographic projection and comparing them with the angles between various combinations of the experimentally identified planes (Table 2) as computed

Fig. 5. Schematic diagram of angular relationship of the crystallographic surfaces of a section of hole shown in Fig. 4.

Fig. 6. Stereographic projection of planes and directions for analysis of plane intersections of [IT20] sublimation in zinc.

Fig. 9. (a) Stereographic projection of the planes in the (0001) (1010) (1120) triangle. (b) Stereographic representation of the relative surface free energy $(\% / \%(0001))$ of the planes in the (0001) (10T0) (11 $\overline{2} 0$) triangle.
by the equations given in the Appendix. This projection is shown in Fig. 6 where the open circles denote the measured angles.
From this projection it is observed that some of the experimentally observed angles are better explained by the intersection of two planes from different families (e.g. the direction measurement attributed to the matching of an ($0 \overline{1} 1 \overline{1}$) surface with a ($\overline{\mathrm{I}} 011$) surface as shown in Fig. 5 appears closer to a ($\overline{2} 2 \overline{3}$)-($\overline{1} 011$) matching in the stereographic projection). The fact that several of the observed angles correspond more closely to the matching of planes of different families of the $\{h 0 \bar{h} l\}$ type suggests that this is a systematic occurrence in the holes. These results were also confirmed by the construction of hard-sphere crystal models which demonstrate the configuration of different atomic-plane intersections (Nicholas, 1965), as shown in Figs. 7 and 8 , where the matching of a ($\overline{\mathrm{I}} 011$) surface with a ($0 \overline{1} 1 \overline{1}$) surface and the matching of a ($0 \overline{2} 2 \overline{3}$) surface with a (2023) surface are illustrated. Fig. 7 shows an example of the crystallographic nature of the diagonal section of the boundaries of the polygonal holes that give rise to the zigzag appearance of the total boundary which is seen in Figs. 4 and 5. Fig. 8 demonstrates that planes of type, say $\{2023\}$ may be viewed as being composed of segments of $\{0001\}$ and $\{10 \overline{1} 1\}$.

Discussion

The crystallographic indices which were determined for the planes exposed in the polygonal holes give, at
first consideration, a qualitative indication that the anisotropy of the surface free energy of the h.c.p. lattice of zinc may play an important role in the macroscopic appearance of the partially sublimed crystals. This occurs because only $\{h 0 \bar{h} l\}$ surfaces were identified around the $\langle 0001\rangle$ axis and these planes are of the same type as those composing the reported GibbsWulff figure. Also, in agreement with Andrade \& Randall (1950), it was observed that the basal surfaces of the crystals remained essentially inert during the sublimation process and this is consistent with the large anisotropy of the surface free energy of zinc.

The planes actually observed in our experiments are marked in Fig. 9 with respect to their orientation in the standard triangle and the computed (on the basis of pairwise interaction model) values of their surface free energies (Miller et al., 1969; Wolff \& Gualtieri, 1962). Fig. 9 shows that planes of type $\{h 0 h l\}$ have the lowest surface free energies, which agrees with the observation made in the crystallographic holes. However, as can be seen in Fig. 10, planes of the type $\{40 \overline{4} 1\},\{30 \overline{3} 1\}$, $\{30 \overline{3} 2\}$ and $\{20 \overline{2} 1\}$, which have been identified in the polygonal holes, are intermediate planes of higher energy separating planes of type $\{10 \overline{1} 1\}$ and $\{10 \overline{0} 0\}$. Similarly, the $\{20 \overline{2} 3\}$ and $\{40 \overline{4} 5\}$ are intermediate planes between the lower energy $\{10 \mathrm{I} 1\}$ and $\{0001\}$. Thus the presence in the polygonal holes of the intermediate surfaces of high relative energies is apparently inconsistent with the computed Gibbs-Wulff shape for zinc.
The appearance of planes other than $\{0001\},\{10 \overline{1} 1\}$ and $\{10 \overline{1} 0\}$ implies that the macroscopic polygonal holes cannot be viewed as a simple aggregation of submicroscopic holes which do conform to the computed Gibbs-Wulff shape for zinc, barring the possibility that the computed Gibbs-Wulff shape itself is incorrect for the conditions of our experiment. It is possible that the model for the computed Gibbs-Wulff shape is incorrect
or that preferential absorption of gaseous species has altered the relative stabilities of the various plane surfaces, as has been found to occur in f.c.c. materials (Gjostein, 1963; Blakely \& Mykura, 1966).

Table 4. Ratios for polygonal holes in zinc, height (h) to width (w)

Fig.I10. (1210) partial section of the Gibbs-Wulff plot.

Fig. 11. Gibbs-Wulff construction for zinc as computed by Wolff \& Gualtieri (1962).

The aspect ratio of the polygonal holes may also be compared with the Gibbs-Wulff shape predicted by the Gibbs-Wulff theorem $(15,16)$. In the case of zinc, the computed Gibbs-Wulff shape is a squat figure when viewed with the [0001] axis vertical. Along the [T120] the height (h) to width (w) ratio is 0.51 whereas along [10 T 0] the height to width ratio is 0.44 . Fig. 11 shows these three two-dimensional views as they combine to form the computed three-dimensional GibbsWulff shape. However, Figs. 2 and $4(d)$ as well as the representative measured height to width ratio of holes listed in Table 4 contradict the aforementioned GibbsWulff shape. The explanation for this phenomenon
may lie in the enhanced nucleation of submicroscopic holes along a [0001] axis once an initial hole has formed, or by kinetic effects favoring the rapid growth of holes along the [0001] direction or, simply, by the inadequacy of the Gibbs-Wulff shape evaluated from the surface energies resulting from a pairwise interaction model.

A dislocation lineage structure has been observed (Schultz \& Armstrong, 1964) in our crystals following the crystal-solidification process. The dislocation subboundaries are oriented so that they contain the [0001] growth axis. The boundary misorientations appear to correspond mainly to tilts around axes in the $\{0001\}$;

Table 5. Angles between $\left\langle u_{1} v_{1} t_{1} w_{1}\right\rangle$ and $\left\langle u_{2} v_{2} t_{2} w_{2}\right\rangle$ for zinc ($c / a=1.8563$)

	[$\left.u_{1} v_{1} t_{1} w_{1}\right]$				[$\left.u_{1} v_{1} t_{1} w_{1}\right]$				[$\left.u_{1} v_{1} t_{1} w_{1}\right]$		
		1 T 00	$2 \overline{110}$			1 I 00	$2 \overline{110}$			1 I 00	2 T 10
	0001	0110	İ2T0		0001	01 T 0	İ2 10		0001	01 T 0	I210
$\left[u_{2} z_{2} t_{2} w_{2}\right]$0001		$\overline{1010}$	IT20	[$\left.u_{2} v_{2} t_{2} w_{2}\right]$		$\overline{1010}$	IT20	[$\left.u_{2} v_{2} t_{2} w_{2}\right]$		$\overline{1010}$	T120
	0.000	90.000	90.000	$11 \overline{2} 0$	$90 \cdot 000$	90.000	$60 \cdot 000$	3144	$40 \cdot 065$	79.716	62.366
		90.000	90.000			$30 \cdot 000$	60.000			63.493	$81 \cdot 106$
		90.000	90.000			30.000	0.000			$51 \cdot 330$	51.799
10 T 0	$90 \cdot 000$	60.000	30.000	1121	58.252	90.000	64.837	3145	$33 \cdot 934$	81.093	$66 \cdot 280$
		60.000	90.000			42.570	$64 \cdot 837$			67.227	82.294
		$0 \cdot 000$	$30 \cdot 000$			42.570	31.747			$57 \cdot 186$	57.565
10 T	$43 \cdot 016$	70.055	53.785	1152	38.940	90.000	71.684	3146	29.279	$82 \cdot 620$	69.365
		70.055	90.000			57.022	71.684			$70 \cdot 177$	83.254
		46.983	53.785			57.022	$51 \cdot 059$			$61 \cdot 656$	61.973
$10 \overline{2}$	$25 \cdot 010$	77.796	68.522	1123	28.311	90.000	76.282	4150	$90 \cdot 000$	$70 \cdot 893$	40.893
		77.796	90.000			65.749	76.282			$49 \cdot 106$	79.106
		$64 \cdot 989$	68.522			65.749	61.688			10.893	19.106
1013	17.276	81.460	$75 \cdot 096$	1124	$22 \cdot 000$	90.000	79.204	4151	76.836	71.414	42.602
		81.460	90.000			71.069	79.204			$50 \cdot 397$	79.396
		72.723	75.096			71.069	67.999			17.024	23.061
$10 T 4$	$13 \cdot 130$	83.478	78.654	1125	17.912	90.000	$81 \cdot 154$	4152	$64 \cdot 932$	72.752	46.785
		83.478	$90 \cdot 000$			$74 \cdot 552$	81.154			53.630	$80 \cdot 143$
		76.869	78.654			$74 \cdot 552$	72.087			27-191	31.139
1015	$10 \cdot 570$	84.737	80.858	2130	$90 \cdot 000$	79.106	$49 \cdot 106$	4153	54.945	74.457	51.770
		84.737	$90 \cdot 000$			$40 \cdot 893$	70.893			$57 \cdot 594$	$81 \cdot 100$
		79.429	80.858			$19 \cdot 106$	10.893			36.499	39.329
2021	61.814	63.850	$40 \cdot 240$	2131	$67 \cdot 948$	79.912	52.644	4154	$46 \cdot 909$	$76 \cdot 170$	56.493
		$63 \cdot 850$	$90 \cdot 000$			$45 \cdot 522$	72.339			61.440	82.067
		28.185	$40 \cdot 240$			28.861	24.474			44.183	46.366
2023	31.883	$74 \cdot 686$	62.778	2132	50.987	$81 \cdot 556$	59.424	4155	$40 \cdot 536$	77.717	$60 \cdot 574$
		74.686	90.000			54.030	75.265			64.819	82.944
		58.116	62.778			42.760	40.270			50.341	52.111
2025	$20 \cdot 466$	79.931	72.372	2133	$39 \cdot 450$	$83 \cdot 103$	$65 \cdot 419$	5160	$90 \cdot 000$	68.948	38.948
		79.931	90.000			61.293	77.995			51.051	81.051
		69.533	$72 \cdot 372$			53-100	51.394			8.948	21.051
3031	$70 \cdot 341$	61.910	35.358	2134	$31 \cdot 681$	$84 \cdot 303$	69.890	5161	79.104	$69 \cdot 345$	$40 \cdot 209$
		$61 \cdot 910$	90.000			66.608	80.101			51.881	81.214
		19.659	$35 \cdot 358$			60.246	58.953			14.064	23.589
3032	$54 \cdot 454$	65.994	$45 \cdot 199$	2135	$26 \cdot 277$	85.200	73.152	5162	68.944	70.413	43.465
		65.994	$90 \cdot 000$			$70 \cdot 448$	81.667			54.080	81.653
		$35 \cdot 545$	$45 \cdot 199$			$65 \cdot 271$	64.231			22.798	29.431
4041	$75 \cdot 000$	$61 \cdot 120$	33.225	3170	90.000	73.897	43.897	5163	59.995	71.876	47.663
		$61 \cdot 120$	90.000			$46 \cdot 102$	76.102			57.018	82.258
		14.999	33.225			13.897	16.102			31.191	36.081
4043	$51 \cdot 207$	67.063	47.546	3141	73.445	$74 \cdot 582$	46.313	5164	52.405	$73 \cdot 463$	51.959
		$67 \cdot 063$	90.000			48.345	76.689			$60 \cdot 126$	82.920
		38.792	47.546			$21 \cdot 488$	22.935			38.491	42.314
4045	36.739	72.597	58.799	3142	59-268	$76 \cdot 207$	51.728	5165	46.096	$75 \cdot 000$	55.920
		72.597	90.000			53.415	78.084			63.068	83.565
		53.260	58.799			33.445	34.324			$44 \cdot 623$	47.746
5051	77.901	60.732	$32 \cdot 135$	3143	48.275	78.053	57.465	$51 \overline{6} 6$	$40 \cdot 887$	76.400	59.397
		60.732	90.000			58.835	79.672			$65 \cdot 702$	84.156
		12.098	32.135			$43 \cdot 572$	$44 \cdot 186$			$49 \cdot 713$	52.346

however, other rotation axes have also been observed (see e.g. Table 1). Because the orientation of the subboundary surfaces is predominantly parallel to $\langle 0001\rangle$, we suggest that the elongated shape of the polygonal holes may in fact be determined by easy nucleation or growth of the holes along such boundaries. It was observed, as seen in Fig. 12, that the dislocation subboundary structure became sharply defined during the sublimation treatment but sufficiently precise measurements have not yet been made to assess the actual relation, if any, of the dislocation substructure to the sublimation structure. In this regard, it should be mentioned that the dislocation line orientations and

Burgers vectors have also been described for crystals of the type employed in the present investigation (Schultz \& Armstrong, 1964). The outstanding majority of dislocations lie in the basal plane. They appear to have line and Burgers vectors along $\langle 10 \overline{1} 0\rangle$ and $\langle 1 \overline{2} 10\rangle$. It also seems reasonable, therefore, that preferential sublimation should generally occur in directions orthogonal to [0001] as compared with the [0001] because the sublimation process occurs more easily at the emergence sites of the main quantity of dislocations.

Thermodynamically, the observation that sublimation takes place at distinct points on the crystal surface (i.e. to produce the polygonal holes) and that these

Table 6. Angles between $\left\{h_{1} k_{1} i_{1} l_{1}\right\}$ and $\left\{h_{2} k_{2} i_{2} l_{2}\right\}$ for zinc ($c / a=1 \cdot 8563$)

	$\left(h_{1} k_{1} i_{1} l_{1}\right)$			$\left(h_{2} k_{2} i_{2} l_{2}\right)$	$\left(h_{1} k_{1} i_{1} l_{1}\right)$			$\left(h_{2} k_{2} i_{2} l_{2}\right)$	$\left(h_{1} k_{1} i_{1} l_{1}\right)$		
$\left(n_{2} k_{2} i_{2} l_{2}\right)$	0001	1 T 00	$2 \mathrm{~T} \overline{10}$		0001	1 100	2110		0001	$1 \overline{1} 00$	2 110
		$01 \overline{10}$	$\overline{1} 2 \overline{1} 0$			01 T 0	12T0			0110	12 T 0
		$\overline{1010}$	$\overline{1120}$			1010	I120			1010	T120
0001	$0 \cdot 000$	$90 \cdot 000$	$90 \cdot 000$	$11 \overline{2} 0$	$90 \cdot 000$	50.000	60.000	3144	62.635	75.740	50.212
		90.000	$90 \cdot 000$			- 30.000	$60 \cdot 000$			51.990	77.683
		$90 \cdot 000$	$90 \cdot 000$			30.000	60.000			30.446	31.432
10 T 0	$90 \cdot 000$	$60 \cdot 000$	$30 \cdot 000$	$11 \overline{2} 1$	74.952	90.000	$61 \cdot 132$	3145	57.098	76.534	52.771
		60.000	$90 \cdot 000$			$33 \cdot 256$	61.132			54.397	78.365
		0.000	$30 \cdot 000$			$33 \cdot 256$	15.074			35.409	36.228
10 I 1	$64 \cdot 989$	63.056	38.296	$11 \overline{2} 2$	61.688	$90 \cdot 000$	63.883	$31 \overline{4} 6$	$52 \cdot 176$	77.345	55.306
		63.056	$90 \cdot 000$			$40 \cdot 320$	$63 \cdot 883$			56.790	79.063
		25.010	38.296			$40 \cdot 320$	28.311			39.934	40.631
$10 \overline{2}$	46.983	68.556	50.713	$11 \overline{2} 3$	51.060	$90 \cdot 000$	$67 \cdot 113$	4150	$90 \cdot 000$	$70 \cdot 893$	$40 \cdot 893$
		68.556	90.000			$47 \cdot 654$	$67 \cdot 113$			49.106	79.106
		43.016	50.713			47.654	38.939			10.893	19.106
$10 \overline{13}$	35-545	73-101	59.770	$11 \overline{2} 4$	$42 \cdot 866$	90.000	$70 \cdot 114$	4151	$84 \cdot 187$	70.995	41.232
		$73 \cdot 101$	$90 \cdot 000$			53.903	70.114			49.361	79.163
		54.454	59.770			53.903	47.133			$12 \cdot 330$	19.939
$10 \overline{1} 4$	$28 \cdot 185$	76.339	$65 \cdot 854$	$11 \overline{2} 5$	$36 \cdot 594$	$90 \cdot 000$	72.657	4152	78.491	71.292	$42 \cdot 206$
		76.339	$90 \cdot 000$			58.916	72.657			50.096	79.328
		61.814	$65 \cdot 854$			58.916	53.405			15.795	22.193
$10 \overline{5}$	23-204	78.637	$70 \cdot 048$	2130	$90 \cdot 000$	$79 \cdot 106$	49.106	4153	73.016	71.756	43.700
		78.637	90.000			$40 \cdot 893$	70.893			51.236	79.587
		66.795	$70 \cdot 048$			$19 \cdot 106$	10.893			20.089	$25 \cdot 350$
$20 \overline{1} 1$	76.869	60.861	$32 \cdot 500$	$21 \overline{3} 1$	79.999	79.274	49.856	4154	67.842	72.352	45.564
		$60 \cdot 861$	$90 \cdot 000$			41.888	71.194			52.676	79.919
		$13 \cdot 130$	32.500			21.478	14.746			24.568	28.939
2053	55-016	$65 \cdot 816$	44.802	2132	$70 \cdot 574$	79.733	51.874	4155	63.022	73.039	$47 \cdot 648$
		65.816	90.000			44.529	72.019			54.308	80.304
		34.984	$44 \cdot 802$			26.985	22.168			28.939	32.638
$20 \overline{5}$	$40 \cdot 609$	71.007	55.688	2133	$62 \cdot 121$	$80 \cdot 383$	54.642	5160	$90 \cdot 000$	68.948	38.948
		71.007	90.000			$48 \cdot 072$	73.181			51.051	81.051
		$49 \cdot 390$	$55 \cdot 688$			$33 \cdot 358$	29.771			8.948	21.051
3031	$81 \cdot 160$	$60 \cdot 392$	31.158	2134	54.803	81.116	57.658	5161	$85 \cdot 210$	69.025	39.195
		60.392	90.000			51.849	74.485			51.213	81.083
		8.839	31.158			39.451	36.634			$10 \cdot 140$	21-565
3032	72.723	$61 \cdot 481$	$34 \cdot 213$	2135	$48 \cdot 598$	$81 \cdot 850$	$60 \cdot 590$	5162	80.486	69.251	39.913
		61.481	$90 \cdot 000$			$55 \cdot 457$	75.787			51.685	81.175
		17.276	$34 \cdot 213$			$44 \cdot 864$	42.559			13.032	23.012
$40 \overline{4} 1$	$83 \cdot 347$	60.222	30.661	3140	90.000	73.897	43.897	5163	75.889	69.612	41.040
		60.222	90.000			$46 \cdot 102$	76.102			52.435	81.323
		6.652	$30 \cdot 661$			13.897	$16 \cdot 102$			16.659	$25 \cdot 163$
4043	$70 \cdot 715$	61.839	$35 \cdot 171$	3141	82.627	74.034	44.388	5164	$71 \cdot 470$	70.087	42.489
		61.839	$90 \cdot 000$			$46 \cdot 556$	76.219			$53 \cdot 413$	81.719
		19.284	$35 \cdot 171$			15.698	17.669			20.508	27.763
4045	59.751	$64 \cdot 410$	41.573	3142	75.491	74.424	45.765	5165	67.268	70.651	$44 \cdot 167$
		$64 \cdot 410$	$90 \cdot 000$			47.835	76.553			54.564	81.651
		30.249	41.573			19.987	21.545			24.342	30.597
5051	84-669	$60 \cdot 143$	30.426	$31 \overline{4} 3$	68.785	75.015	47.798	$51 \overline{6} 6$	63.309	71.280	45.985
		$60 \cdot 143$	90.000			49.730	77.061			55.831	82.011
		$5 \cdot 330$	30.426			$25 \cdot 185$	26.407			$28 \cdot \mathrm{C} 46$	33.507

polygonal holes have a definite preferred orientation with respect to the crystal axes suggests that their formation may be primarily controlled by a nucleation type process. Furthermore, since the walls of the polygonal holes consist primarily of the planes figuring in the Gibbs-Wulff plot, we may assume that the polygonal holes are in fact composite sections of the three

Fig. 13. Critical hole size as a function of superheating.

Fig. 14. [1510] standard projection for zinc (c/a=1•8563).
dimensional plot shown in Fig. 11 with the basal plane surface decomposed into terrace-like steps. The fact that the macroscopic shape of the holes does not conform to that of the Gibbs-Wulff construction, as we said before, may be due to the inadequacy of the pairwise model used to calculate the surface free energies or to the hole growth kinetics. Assuming for the present that the latter is the cause of the shape discrepancy, but without loss of generality, one can describe the formation of polygonal holes by conventional nucleation theory.

Sections through the center of the Gibbs-Wulff shape (Fig. 11) and parallel, in turn, to $\{10 \mathrm{~T} 0\}$, $\{1 \overline{2} 10\}$ and $\{0001\}$ would produce polygonal holes of the $\langle 10 \overline{1} 0\rangle,\langle 1 \overline{2} 10\rangle$ and $\langle 0001\rangle$ types respectively. The $\langle 0001\rangle$ type, although not observed experimentally, is included to give a measure of the relative stability of the various types of holes. The total energy required to form a polygonal hole of dimension, r, of each of the aforementioned types is:

$$
\begin{aligned}
G\langle 10 \overline{\mathrm{I}} 0\rangle= & \frac{1}{2} r^{3} V \Delta G_{V}+\frac{1}{2} r^{2}[A\{10 \overline{\mathrm{I}} 0\} \gamma\{10 \overline{\mathrm{I}} 0\} \\
& +A\{1 \overline{2} 10\} \gamma\{\overline{2} 10\}+A\{0001\} \gamma\{0001\}] \\
& -r^{2} A^{*}\{10 \overline{\mathrm{I}} 0\} \gamma\{10 \overline{\mathrm{I}} 0\},
\end{aligned}
$$

or,

$$
\begin{aligned}
& G\langle 10 \overline{0} 0\rangle=\frac{1}{2} r^{3} V \Delta G_{V}+\frac{1}{2} r^{2} \Delta G_{A}-r^{2} A^{*}\{10 \overline{1} 0\} \gamma\{10 \overline{1} 0\} ; \\
& G\langle 1 \overline{1} 10\rangle=\frac{1}{2} r^{3} V \Delta G_{V}+\frac{1}{2} r^{2} \Delta G_{A}-r^{2} A^{* *}\{1 \overline{2} 10\} \gamma\{1 \overline{2} 10\} ;
\end{aligned}
$$

and,

$$
G\langle 0001\rangle=\frac{1}{2} r^{3} V \Delta G_{V}+\frac{1}{2} r^{2} \Delta G_{A}-r^{2} A^{* * *}\{0001\} \gamma\{0001\},
$$

where r is the distance from the center of the threedimensional γ plot to the (0001) surface; $r^{3} V$ is the volume of the three-dimensional γ plot; and ΔG_{V} is the volumetric free energy of sublimation; $r^{2} A$ is the total area of each type of surface; $\gamma\{h k i l\}$ is the surface free energy; and $r^{2} A^{*}, r^{2} A^{* *}$ and $r^{2} A^{* * *}$ are the areas of the plane disappearing upon formation of a polygonal hole in each case considered. The numerical values of these quantities can be derived on the basis of the angular relations given in the Appendix and the estimated values of the relative surface energies of various planes (Miller et al., 1969; Wolff \& Gualtieri, 1962).

Now, if a crystal is held in an atmosphere having a partial pressure of zinc lower than the equilibrium vapor pressure at the temperature, T, in question, there is a net overheating of the crystal which amounts to an energy decrease on sublimation given by:

$$
\Delta G_{V}=R T \ln \left[P_{\mathrm{Zn}, \mathrm{~T}}^{0} / P_{\mathrm{Zn}, T_{\mathrm{s}}}^{0}\right]
$$

where T_{s} is the temperature corresponding to equilibrium for the partial pressure of zinc in the atmosphere in question. On the basis of the above equations one can calculate the size of a critical polygonal hole by setting $(\delta G\langle u v z w\rangle / \partial)_{r_{c}}=0$. The results of such calculations of critical size versus degree of superheating for $T=350^{\circ} \mathrm{C}$ and $\gamma\{0001\}=600$ erg.cm ${ }^{-2}$ (Miller et al., 1969) are shown in Fig. 13.

A quantitative evaluation of the obtained experimental results on this basis is, of course, not possible because of the unknown effective T_{s}, the exact configuration of active sites in terms of dislocations and subgrain boundaries, and the lack of information on the growth kinetics after the polygonal holes are nucleated. The results do confirm the strong anisotropy which is expected for the sublimation process. The fact that the basal plane remains essentially unmarked by polygonal holes and the $\langle 10 \overline{1} 0\rangle$ and $\langle 1 \overline{2} 10\rangle$ holes appear with nearly the same frequency is borne out by this calculation. This effect should be further enhanced by the orientation of dislocations discussed previously.

The preceding calculation also gives an indication of the nature of the transition from a thermal etching to a thermal faceting process (Moore, 1963). Although thermal etching and thermal faceting may actually be different in principle, they share a common feature in that when a solid is heated in high vacuum or in an atmosphere under which appreciable sublimation occurs (thermal etching) or in some near equilibrium atmosphere (thermal faceting) for a period of time, the surface of the solid shows preferential sites of transformation containing definite crystallographic planes, usually ones of high atomic density. Thermal faceting may be regarded as thermal etching in the limit of $T-T_{s}=\Delta T \rightarrow 0$ and, since in this limit the critical size of the polygonal hole approaches that of the sample itself, faceting should be observable only when the crystal size is very small (Herring, 1951) or in small regions of a crystal where local temperature fluctuations are sufficiently large to nucleate some equilibrium facets. Such nucleation of small facets has been observed in copper (Mykura, 1969), suggesting that sublimation at very small superheatings and under closely controlled conditions may provide a useful method for the study of the anisotropy of surface energy in crystalline solids.
$\{h 0 h l\}$ as compared with $\{h k i l\}$ are found to bound the holes. The shape of the holes suggests that the relative energy of the $\{h 0 h l\}$ planes may be lower than calculated by the aforementioned model.
(3) The crystallographic orientation of the boundaries produced by intersecting facets and the striated surfaces of the polygonal holes seems to indicate that the shape and the position of the polygonal holes are related to the dislocation substructure of the material. The dislocation substructure was altered during the sublimation process as was observed in Laue backreflection pictures taken of the crystals before and after the sublimation treatments.
(4) The frequency of appearance of different types of polygonal holes is in qualitative agreement with a conventional nucleation analysis. This orientation dependence is in agreement with the results expected on the basis of the character and the configuration of dislocations in the crystals.

The authors thank Dr A. W. Ruff Jr of the National Bureau of Standards and Mr J. V. Larsen of the Naval Ordnance Laboratory for making available certain facilities.

This research has been supported by the Advanced Projects Agency of the U.S. Government through the Center of Materials Research of The University of Maryland. GMA was financially supported by a fellowship sponsored jointly by the Council of Scientific and Humanistic Development of the Central University of Venezuela (UCV) and the Creole Foundation.

APPENDIX

The [$\overline{\Pi 20]}$ standard projection and the ($\overline{\Pi 20}$) standard projection for zinc ($c / a=1.8563$) were constructed after the angles between $\langle\overline{1} 20\rangle$ and $\left\langle u_{2} v_{2} t_{2} w_{2}\right\rangle$ and the angles between $\{\bar{\Pi} 20\}$ and $\left\{h_{2} k_{2} i_{2} i_{2}\right\}$ were computed, using for directions

$$
\cos \beta=-\frac{u_{1} u_{2}+v_{1} v_{2}+\frac{1}{2}\left(u_{1} v_{2}+u_{2} v_{1}\right)+\frac{1}{3} w_{1} w_{2}(c / a)^{2}}{\left[u_{1}^{2}+v_{1}^{2}+u_{1} v_{1}+\frac{1}{3} w_{1}^{2}(c / a)^{2}\right]^{1 / 2}\left[u_{2}^{2}+v_{2}^{2}+u_{2} v_{2}+\frac{1}{3} w^{2}(c / a)^{2}\right]^{1 / 2 / 2}}
$$

and for planes

$$
\cos \alpha=\frac{h_{1} h_{2}+k_{1} k_{2}+\frac{1}{2}\left(h_{1} k_{1}+h_{2} k_{1}\right)+\frac{3}{4} l_{1} l_{2}(a / c)^{2}}{\left[h_{1}^{2}+k_{1}^{2}+h_{1} k_{2}+\frac{3}{4} l_{1}^{2}(a / c)^{2}\right]^{1 / 2}\left[h_{2}^{2}+k_{2}^{2}+h_{2} k_{2}+\frac{3}{4} l_{2}^{2}(a / c)^{2}\right]^{1 / 2}} .
$$

Conclusions

(1) The partial sublimation of [0001] zinc single crystals produces polygonal holes in directions orthogonal to [0001]. The holes are composed entirely of $\{h 0 h l\}$ planes of which some types are clearly identified and other types are only probably detected.
(2) The Gibbs-Wulff shape evaluated by a pairwise interaction model is not in agreement with all of the plane surfaces which were identified nor with the macroscopic shape of the polygonal holes, except for the general fact that the relatively low energy surfaces

These formulas were derived by vector analysis (Arnstein, 1970). Tables 5 and 6 present the angles calculated for both cases. Figs. 14 and 15 show the standard projections which result. Additional computed angles between $\langle 0001\rangle$ or $\langle 10 \mathrm{~T} 0\rangle$ and other directions and between $\{0001\}$ or $\{1010\}$ and other planes are also given in these Tables. The angles between directions can also be calculated by employing the third index t, in which case the crystal symmetry is more clearly recognized and the possibility of misapplying the formulae by taking u and v to be defined for incorrect axes is avoided; e.g.

$$
\cos \beta=\frac{u_{1} u_{2}+v_{1} v_{2}+t_{1} t_{2}+\frac{1}{2}\left(u_{1} v_{2}+u_{2} v_{1}+u_{1} t_{2}+u_{2} t_{1}+v_{1} t_{2}+v_{2} t_{1}\right)+\frac{+}{5} w_{1} w_{2}(c / a)^{2}}{\left[u_{1}^{2}+v_{1}^{2}+t_{1}^{2}+u_{1} v_{1}+u_{1} t_{1}+v_{1} t_{1}+\frac{1}{3} w_{1}^{2}(c / a)^{2}\right]^{1 / 2}\left[u_{2}^{2}+v_{2}^{2}+t_{2}^{2}+u_{2} v_{2}+u_{2} t_{2}+v_{2} t_{2}+\frac{1}{3} w_{2}^{2}(c / a)^{2}\right]^{1 / 2}} .
$$

Pertinent references for this Appendix are Govila (1969), Lawley (1960), Metzbower (1969), Nicholas (1966, 1970), Salkovitz (1951), Taylor \& Leber (1954).

References

Andrade, E. N. da C. \& Randall, R. F. Y. (1950). Proc. Phys. Soc. B63, 198.
Arnstein, G. M. (1970). M.Sc. Thesis, Univ. of Maryland.

Fig. 15. (1210) standard projection for zinc $(c / a)=1 \cdot 8563$).

Blakely, J. M. \& Mykura, H. (1966). Acta Metall.9, 595
Darken, L. S. \& Gurry, R. W. (1953). Physical Chemistry of Metals, p. 349. New York: McGraw-Hill.
Drechsler, M. \& Nicholas, J. F. (1967). J. Phys. Chem. Solids, 28, 2609.
Gibbs, J. W. (1961). The Scientific Papers of J. Willard Gibbs, Vol. 1 (Thermodynamics), p. 55. New York: Dover.
Gjostein, N. A. (1963). Acta Metall. 11, 969.
Govila, R. K. (1969). TMS Paper Selection, No. A 69-12. The Metallurgical Society of AIME.
Herring, C. (1951). Phys. Rev. 82, 87.
Kirchner, H. O. K. \& Chadwick, G. A. (1969). Phil. Mag. 20, 406.
Lawley, A. (1960). Trans. TMS-AIME, 218, 957.
Metzbower, E. A. (1969). NRL Report 6919, Naval Research Laboratory, Washington, D.C.
Miller, W. A., Carpenter, G. J. C. \& Chadwick, G. A. (1969). Phil. Mag. 20, 406.

Moore, A. J. W. (1958). Acta Metall. 6, 293.
Moore, A. J. W. (1963). Metal Surfaces: Structure, Energetics and Kinetics, p. 155. Cleveland: ASM.
Mykura, H. (1969). Molecular Processes on Solid Surfaces, p. 129. New York: McGraw-Hill.

Nicholas, J. F. (1965). An Atlas of Models of Crystal Surfaces. New York: Gordon and Breach.
Nicholas, J. F. (1966). Acta Cryst. 21, 880.
Nicholas, J. F. (1970). Phys. Stat. Sol. (a) 1, 563.
Salkovitz, E. I. (1951). Trans. TMS-AIME, 191, 64.
Schultz, J. M. \& Armstrong, R. W. (1964). Phil. Mag. 10, 497.
Taylor, A. \& Leber, S. (1954). Trans. TMS-AIME, 200, 190.

Wolff, G. A. \& Gualtieri, J. G. (1962). Amer. Miner. 47, 562.

Wulff, G. (1901). Z. Kristallogr. 34, 449.

On a New Retigraph with Pure Precession Motion

By Glauco Gottardi
Istituto di Mineralogia e Petrologia, Università di Modena, Italy

(Received 21 January 1972)
A new precession retigraph is described which allows precession angles of up to 45°. It does not contain a universal-joint suspension, and it has a pure precession motion.

Introduction

An instrument capable of giving an undistorted photograph of the reciprocal lattice is usually called a 'retigraph'. All retigraphs are characterized by the presence of a crystal support and a film support, both of which must have exactly the same movement. One can iden-
tify three classes of instruments depending on the kind of movement: rotation models, precession models and generalized-movement models. The retigraphs of the different classes give spots of different shapes, and different Lorentz factors must be used in correcting the intensities.

The first retigraph was built by de Jong \& Bouman

[^0]: * Fellow of the Council of Scientific and Humanistic Development of the Central University of Venezuela (UCV).

